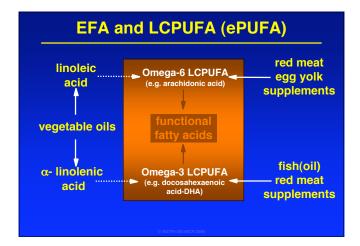
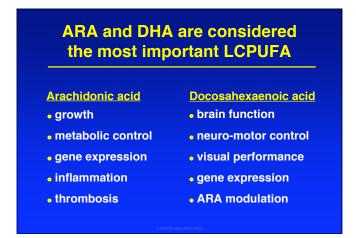
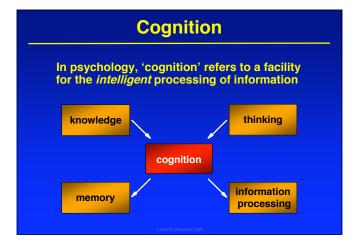
Early essential fatty acid status and later cognitive development of children

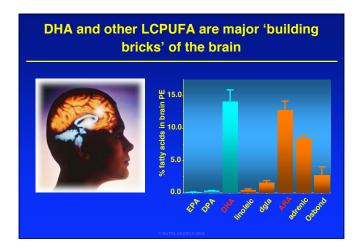
Gerard Hornstra PhD

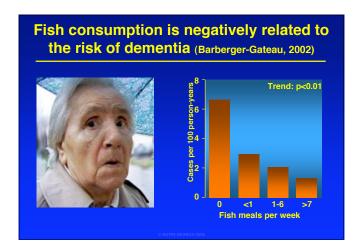
Prof. Em. of Experimental Nutrition
Maastricht University
and
NUTRI-SEARCH
Maastricht, the Netherlands

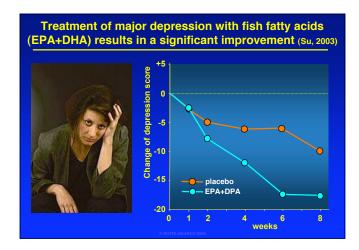

Early ePUFA status and later cognitive development of children

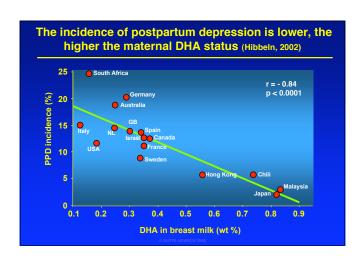

- Essential polyunsaturated fatty acids (ePUFA), cognition, and brain function
- Early ePUFA status may not be optimal and differs considerably between healthy neonates
- Some aspects of cognition and behavior of children are associated with their early DHA status
- Summary

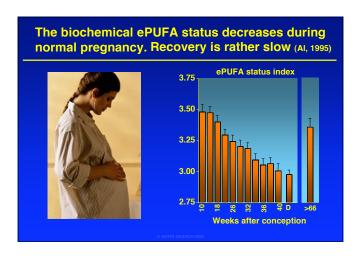

EFA and LCPUFA (ePUFA)

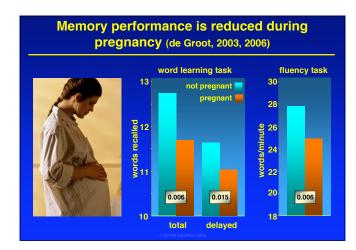

- Essential fatty acids (EFA) and their longerchain, more-unsaturated derivatives (LCPUFA), serve vital functions in the human body
- These fatty acids cannot (EFA) or hardly (LCPUFA) be produced in the human body
- Therefore, their adequate dietary intake is essential for optimal health

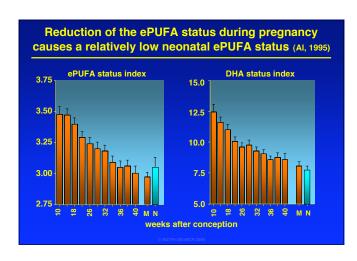

SEAFOODplus

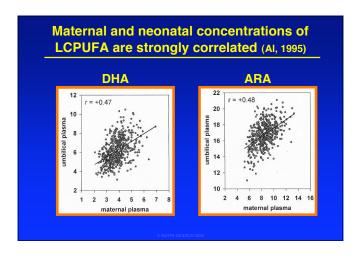





Various mental disorders are associated with lower amounts of (mainly omega-3) LCPUFA


- Depression
- Stress and aggression
- Attention Deficit/Hyperactivity Disorder (ADHD)
- Dyslexia
- Dyspraxia
- Schizophrenia
- Autistic Spectrum Disorders


G.Hornstra@Nutrisearch.nl



Early 'programming' of brain function by perinatal LCPUFA availability?

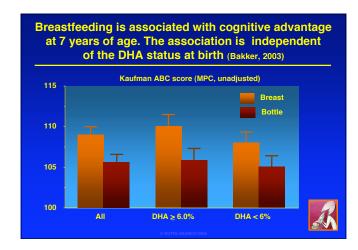
- Brain development mainly takes place during late gestation and early extra-uterine life
- LCPUFA are important 'building bricks' of the brain
- The LCPUFA status at birth is highly variable

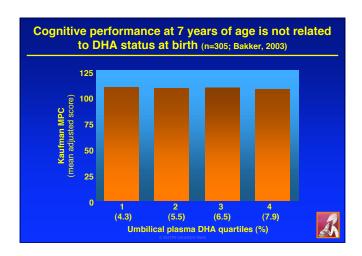
 ARA: 11-20%

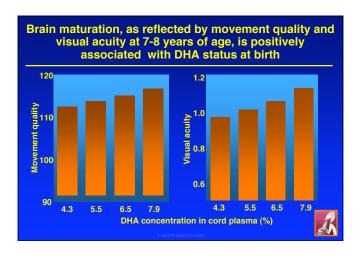
 DHA: 3-10%
- Does this difference in perinatal LCPUFA availability affect later brain function and

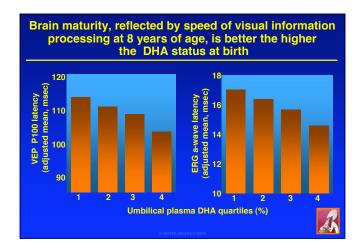
The Maastricht Essential Fatty Acid **Birth (MEFAB) cohort**

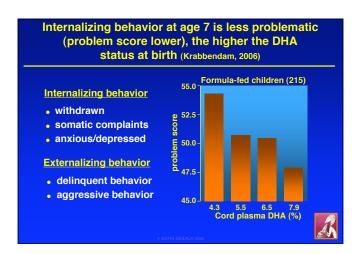
To investigate whether the perinatal availability of ePUFA (as indicated by their concentrations in umbilical phospholipids) is associated with later mental and physical development

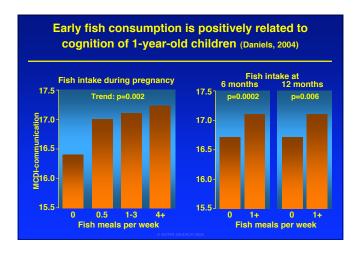


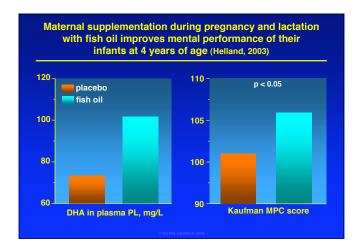

Population of follow-up study


- 306 children born healthy and at term; 170 boys, 136 girls
- 144 breast-fed (mean duration 5 months)
- 161 formula-fed (no LCPUFAs)


Fatty acid	Mean	SD	Min	Max
AA	16.64	1.58	11.04	20.20
DHA	6.14	1.38	3.12	10.10


G.Hornstra@Nutrisearch.nl 6





G.Hornstra@Nutrisearch.nl

Summary

- Certain essential polyunsaturated fatty acids, the LCPUFA, are structural and functional brain components
- The increased LCPUFA requirement of women during pregnancy and lactation is not adequately met by their dietary intake
- The LCPUFA status of neonates is determined by that of their mothers and may not be optimal
- Fetal DHA availability of healthy term infants is positively correlated with certain aspects of brain function and behavior at 7 to 8 years of life

The recommended intakes of EFA and LCPUFA are highly variable

Recommendations mainly based on:

- breast milk fatty acid composition functional benefits (visual function and brain development) of LCPUFA-supplemented formula
- intake of clinically healthy adults

Age (months)	1	6	12	adults
Linoleic acid (g/day)	0.9-5.9	2.0-12.6	2.6-16.6	15-20
α-linolenic acid (g/day)	0.2-0.6	0.4-1.4	0.6-1.9	1.5-2.5
AA (mg/day)	30-50	60-120	80-160	
EPA + DHA (mg/day)	20-70	40-140	55-200	200-1000
omega-3/6 ratio		0.10-0.20		0.10-0.20

G.Hornstra@Nutrisearch.nl 9